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1 Introduction

The past several decades bore witness to significant changes in education-related gen-
der gaps. In the years immediately following World War II, only one female enrolled
in college for every 2.3 males. Yet by the 1980s, women surpassed men in both college
enrollment and completion (Goldin et al., 2006). These successes in postsecondary edu-
cational attainment, however, failed to translate into higher rates of female participation
in select science, technology, engineering and math (STEM) fields, where women are still
vastly underrepresented (Turner and Bowen, 1999; Griffith, 2010). In particular, gender
disparities are most glaring in the subfield of engineering, where women comprise only
12 percent of working engineers in 2013 (Legewie and DiPrete, 2014; Corbett, 2015). The
persistence of the sizable engineering disparity in spite of gender gap reversals in non-
STEM subjects and STEM ones such as biology is a prevailing puzzle.

Gender disparities in fields of study have lasting consequences for longer-term earn-
ings and skill distributions. STEM graduates enjoy a substantial pay premium relative
to peers in other fields. The difference in log wages between engineers and education
majors, for instance, rivals the earnings gap between college and high school graduates
(Altonji et al., 2012). Differential take-up of science and math-intensive fields account
for a notable share of the male-female earnings gap, such that achieving gender parity
on major choice could significantly reduce earnings inequality (Paglin and Rufolo, 1990;
Brown and Corcoran, 1997; Blau and Kahn, 2000). Gender gaps in major or occupational
choice can also lead to differential accumulation of STEM-focused human capital among
men and women that matter for tomorrow’s workforce.

This paper uses new administrative data from North Carolina and a pooled national
survey of college freshmen to investigate the largest contributor to STEM disparities: en-
gineering. While a plethora of economics studies focuses on the aggregate STEM gender
gap, comparatively little research examines specific STEM subfields. Yet the divergent
patterns by subfield, from postsecondary gender parity in biology to striking gaps in
computer science and engineering, necessitate a more targeted approach. This work con-
tributes evidence on the gender gap along three dimensions. The first is to document the
size of the disparity in engineering and its evolution from the beginning of high school
through postsecondary schooling. Linked administrative data permits a detailed look at
how major orientation in high school translates to actual major choice during the critical
transition to college. Second, I differentiate between the roles of entry versus exit dur-
ing college, using administrative postsecondary data to document attrition rates by gen-
der. The final and most substantial component examines contributors to the gender gap,
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ranging from individuals’ ability beliefs to professional preferences. The combination of
a statewide longitudinal dataset and national survey data enables a more comprehensive
account of factors underlying the engineering gender gap than previously available.

The datasets’ temporal coverage permits a closer look at engineering participation
starting in high school. Using engineering orientation or choice as outcome variables, I
document a disparity of over 8 percentage points in 9th grade and 11 percentage points
after the first year of postsecondary education. The magnitude of this gap is especially
striking in light of baseline female engineering participation rates between 2 to 4%. Lon-
gitudinal data in North Carolina shows that while the majority of the postsecondary gen-
der gap is explained by high school engineering orientation, women are nevertheless less
likely to convert early interest in engineering to actual major choice. Once students have
declared an engineering major in the North Carolina public university system, I find no
evidence to support systematically higher attrition among female students. Results in-
dicate that the gap is mainly attributable to lower entry among female students rather
than higher exit during this period. Efforts to increase the rate of female entry and reduce
gender divergence in STEM orientation, in particular engineering, should begin no later
than high school and not neglect the crucial transition into college.

Tailored policies rely on a better understanding of the gender gap’s contributors. I
investigate four explanatory accounts: differences in academic preparation, differences
in academic ability beliefs, differences in prosocial values and professional goals, and the
role of family structure and gender-based norms. Decomposition evidence shows that
SAT scores and high school GPA account for between 5 to 7% of the overall disparity.
Course-taking patterns in the first half of high school betray few clues on eventual major
orientation. Meanwhile, beliefs about lower academic ability dissuade women from en-
tering the field even after controlling for academic performance. Elevating women to the
same belief levels as their male counterparts would bridge the gender gap by 8%. Female
preferences for prosocial responsibilities and contributing to the arts over sciences explain
over 14% of the gap. Notably, decomposition results for the full sample disguise sub-
stantial heterogeneity across racial groups and baseline math ability. Explanatory factors
collectively explain more of the gender gap for white, Hispanic, and Asian students than
African American students because black females track their male peers more closely in
academic preparation and professional goals. The importance of ability beliefs and pro-
fessional goals is also increasing in baseline math ability. Overcoming the female math
confidence deficit alone would bridge the gender gap by 7% among students most aca-
demically prepared to enter engineering, relative to 4-5% among lower-scoring students.

Complementing these explanatory accounts is a set of gender-specific norms and ex-
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pectations conveyed mainly in the family context by parents. To better understand their
influence on STEM participation, I use a sample of twin pairs in North Carolina under the
identifying assumption that sex assignment is exogenous. A potential challenge to this as-
sumption is the inability to distinguish identical twins from fraternal twins in the data. As
such interpretation depends on how unobserved genetic or environmental factors affect-
ing the presence of identical twins might be correlated with future parental expectations
and investments. I find that males from opposite-sex pairs are substantially more likely
than males from same-sex pairs to choose engineering as a preferred major. These results
cannot be explained by differential math ability or a relative advantage story, in which
STEM is chosen by the twin with higher math performance. The specialization along
gender-stereotypical lines suggests that gender roles and expectations can play a mean-
ingful role, for instance by encouraging boys to invest in more male-dominated pursuits
such as computer skills and engineering.

This paper is organized as follows. The next section highlights engineering’s contri-
bution to the overall STEM gap and grounds this study in related literature. Section 3
details the three main administrative and cross-sectional datasets utilized for decomposi-
tion. Section 4 describes the role of entry vs. exit, while the subsequent section outlines
the empirical strategy. Section 6 presents evidence on the relevance of each explanatory
account. I conclude with a discussion of implications.

2 Factors contributing to the STEM gender gap

Gender gaps in major choice are large and persistent in the US context. Table 1 uses Cen-
sus data to document the share of recent college graduates across all STEM subjects and
by subfield.1 Although males are twice as likely to graduate from college with a STEM
degree on aggregate, this result disguises large variations by subfield. Degree attainment
in biology nears gender parity, while fields such as engineering and computer science still
exhibit sizable gaps. 11.7% of male graduates select engineering, compared to only 2.5%
of females.2 Over 9 percentage points of the 16 percentage point STEM gap is attributable
to gender disparities in engineering, while computer science contributes an additional 4

1I define a field as STEM if it belongs to one of the following categories: 1) Agriculture, 2) Computer
and Information Sciences, 3) Engineering, 4) Engineering Technologies, 5) Biology and Life Sciences, 6)
Mathematics and Statistics, 7) Physical Sciences, and 8) Nuclear, Industrial Radiology, and Biological Tech-
nologies, abbreviated as Science Tech.

2While this study focuses on the US context, its findings are consistent with gender disparities docu-
mented in other countries. For instance, Card and Payne (2017) find a 13.2 percentage point gender differ-
ence in engineering participation among Canadian workers between the ages of 25 and 34.
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percentage points. Since engineering plays an outsized role in informing the STEM gen-
der gap, it is the central focus of this paper.

〈 Table 1 about here 〉

In decomposing the gender gap into explanatory accounts, I draw upon a wealth of
literature exploring cross-gender differences in the STEM context. Previous research con-
centrates on several sources of disparity: academic skills and preparation, family back-
ground and expectations, tastes or preferences such as those related to pecuniary payoffs
or the work environment, and psychosocial attributes such as ability beliefs. Within aca-
demic preparation, the preponderance of research focuses on math skills. Earlier studies
often cite differences, although gaps in performance have closed in recent years (Xie and
Shauman, 2003; Hyde et al., 2008). Recent studies find small or insignificant gender dif-
ferences in math standardized tests across elementary and secondary schools (Hyde et al.,
2008; Hyde and Mertz, 2009; Sass, 2015), while others find that gaps only materialize sev-
eral years into school entry (Fryer and Levitt, 2010). Among the mathematically gifted,
evidence for higher variability among males shows diminishing gaps over time.3 Condi-
tioning on performance and grades still leaves a large unexplained residual in the STEM
gender gap, suggesting that academic preparation plays a relatively minor role (Turner
and Bowen, 1999; DiPrete and Buchmann, 2013; Card and Payne, 2017).

Family background is another potential source of influence on individuals’ STEM ori-
entation. Parental expectations of children’s math and science abilities and academic tra-
jectories may differ by child’s gender, thereby affecting students’ investments in such
skills (Eccles et al., 1990). These expectations can be shaped by parents’ own educational
and occupational experiences. While a growing body of literature is formally incorpo-
rating parental beliefs as an input into human capital production, limited empirical evi-
dence exists on the role of parental influence for STEM orientation (Fryer and Levitt, 2010;
Agostinelli and Wiswall, 2016).

Pre-labor market skill accumulation also depends on individual preferences for field
or job attributes. Women may enjoy taking non-STEM courses and sort into those fields
on the basis of non-pecuniary factors. Over time, differences across gender preferences
can lead to clearly differentiated human capital acquisition. There is growing evidence af-
firming the important role of preferences. Zafar (2013), for instance, finds that differences
in coursework and workplace enjoyment and gaining parents’ approval are the primary

3A 13:1 ratio of men to women among high SAT math achievers in the early 1980s has since bridged to
approximately 2:1 at the top end of the distribution (Benbow and Stanley, 1983; Ellison and Swanson, 2010).
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explanations of divergent major choices among male and female college students.4

One explanatory account receiving increasing attention is psychosocial attributes. There
is accumulating evidence that gender-based differences in confidence and mindsets in-
fluence individuals’ academic behavior (Sax, 1994; Beyer and Bowden, 1997; Dar-Nimrod
and Heine, 2006). Laboratory experiments in economics show that conditional on per-
formance, higher confidence can drive men to enter competitive arenas at greater rates
than women (Gneezy et al., 2003; Niederle and Vesterlund, 2007). In the field, psychoso-
cial attributes can affect actual academic decisions. Confidence and an inclination for
competitiveness influence females’ performance in high-level math tests (Niederle and
Vesterlund, 2010). Females who ascribe to a fixed view of ability do worse than those
who emphasize an experiential and malleable account of math ability (Dar-Nimrod and
Heine, 2006).5 The preponderance of math-based curricula in STEM majors brings these
issues to the fore. Insofar as students perceive STEM majors to require technical mas-
tery, gender gaps in beliefs about one’s own ability can lead men and women to sort into
different academic tracks (Correll, 2004).

While the above accounts have been tested in a wide number of studies to illuminate
STEM gender disparities, significantly less is known about explanatory accounts for any
given subfield such as engineering. Existing studies predominantly focus on the postsec-
ondary engineering gap and document the roles of factors such as achievement beliefs or
academic performance using survey data (Vogt et al., 2007; Heyman, 2002; Sax et al., 2016).
This paper uses statewide administrative data and two national surveys to comprehen-
sively document the evolution of the engineering gender gap from secondary schooling
through college. Data from high school years informs the appropriate timing of interven-
tions, as earlier policy responses are necessary if STEM orientation is diverging in lower
grades. Another advantage of the present study is the availability of longitudinal data on

4An important question beyond the scope of this paper is how these preferences develop and evolve
over the life course. Evidence shows that environmental factors such as academic context matter. Attending
single-sex schools or classrooms with higher shares of females can encourage more women to choose STEM
majors (Solnick, 1995; Billger, 2002; Favara, 2012). Similarly, exposure to female teachers and faculty can
increase female students’ participation in STEM courses and majors (Rothstein, 1995; Bettinger and Long,
2005; Dee, 2007; Carrell et al., 2010), although some studies find non-existent or only temporary effects
(Canes and Rosen, 1995; Sass, 2015). Thus the social or institutional context can shape gender gaps by
influencing individual preferences and subsequently affecting students’ investments in science and math
skills. In this respect, preferences are not independently determined, but rather dynamically connected to
academic preparation and social context in its development.

5Research on mindsets finds that women are more likely to hold a fixed view of intelligence, where abil-
ity is intrinsic and cannot be easily gained, while males are more likely to ascribe to an incremental theory
of intelligence that enables augmentation through hard work (Dweck, 2000, 2008). The specific academic
context can interact with and activate these attitudes. A recent paper found that academic fields that be-
lieve intrinsic, raw talent are important for success exhibit particularly large gender disparities (Leslie et al.,
2015).
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major orientation from the end of high school to college. This permits a study of changes
in STEM orientation and factors underlying switches during an important transition pe-
riod.

3 Data and descriptive statistics

3.1 North Carolina high schools

The first dataset comprises administrative records spanning all public and charter sec-
ondary schools from the North Carolina Education Research Data Center (NCERDC). Be-
ginning in 2009, NCERDC supplemented the database with College Board data on SAT
scores and major intentions at the end of high school. One set of outcome variable derives
from students’ responses to a question on ”First Choice Major.” Answers on preferred ma-
jor and the certainty of this choice are recorded during the latest administration of the SAT
taken by the high school student.6 I limit the sample to students who do so during their
junior or senior year, such that the variable describes major intentions during the second
half of high school.7 Unique data on actual college behavior is available in 2010, when the
College Board begins listing all colleges to which the student submitted their SAT score
reports.

Students’ academic achievement variables derive from high school transcript files that
detail courses taken and grades associated with each. It is possible to construct cumula-
tive GPA for the first two years of high school using course-level data. I also include
earned credit hours in reading, math, physical science, and computer programming dur-
ing the first half of high school.8 The longitudinal combination of students’ academic
achievement history and forward-looking plans render these data elements suitable for
exploring academic factors associated with major orientation. In addition, the SAT ques-
tionnaire solicits information on extracurricular activities in grades 9 and 10 including
participation in computer and musical activities.

Table A1 summarizes SAT and GPA performance, earned course credits, and extracur-
ricular participation using the 2009 - 2014 cohorts of graduating seniors. It differentiates

6Options given in the SAT questionnaire on the certainty of the student’s first choice major include “very
certain,” “fairly certain,” and “not certain.”

7One caveat is that the outcome is conditional on taking the SAT. Students who do not intend to enroll
in a 4-year institution or took the ACT in place of the SAT are excluded from this sample. Using the 2009
cohort, 47% of high school seniors in the NCERDC database took the SAT at least once.

8Each student is given a 2-year period for accumulating credits in each subject under the assumption
of regular academic promotions. For example, course history information for a graduating senior in 2009
derives from 2007 10th grade and 2006 9th grade transcript files. The physical science category describes
cumulative credits earned in physical science, chemistry, and physics courses.
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the academic trajectories of those not inclined towards engineering from same-gender
peers who prefer this track. For example, aspiring engineers of both genders differenti-
ate themselves by earning more physical science and computer programming credits and
fewer reading credits in the first half of high school. While non-engineers earn more math
credits early on, the credit advantage reverts back to aspiring engineers by 10th grade.
On the extracurricular front, participation in computer activities are noticeably higher
among the engineering-oriented. Aspiring female engineers are overall more selected in
academic ability than male counterparts. While female non-engineers have lower SAT
math and verbal scores than male non-engineers, females who indicate an engineering
interest have the highest SAT math and verbal scores of any group.

In addition to detailed academic data, NCERDC files provide some context on family
structure by flagging twin pairs using identifying information such as name and birth
date. I construct a sample of twins that ever enrolled in a North Carolina public or charter
school between 2004 and 2007. Of the 9570 pairs in the full sample, 35% are opposite-sex
twins, with the remaining split between same-sex female twins and same-sex male twins
(Table A4). The analytic sample includes pairs who are matched to 2009 - 2014 College
Board data with non-missing SAT scores.

3.2 University of North Carolina

A particular advantage of North Carolina data is the ability to track students from pub-
lic school entry through college graduation in the state’s public university system. An
unique identifier links primary and secondary school records to administrative data in
the 16-campus University of North Carolina (UNC) system. I focus on the 2010 cohort due
to coverage by both College Board and UNC data. The availability of major-related vari-
ables renders this longitudinal dataset well suited for studying the relationship between
major orientation and actual choice as students navigate the transition to postsecondary.

The base sample includes students in a North Carolina public high school during 2010
who took the SAT exam before enrolling in a UNC institution. I exclude unmatched obser-
vations that correspond to out-of-state students, in-state residents who attended private
school, and public school attendees with missing SAT information. Major orientation
comes from responses to the SAT questionnaire, while postsecondary major choice de-
rives from enrollment records covering students’ term-by-term credit accumulation, GPA
and declared major. Using enrollment data, I can track students’ declared majors at a
point in time or for a given course credit milestone.

Students expressing an engineering orientation during high school but end up choos-
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ing a different major in college can depart from their original intention at several points.
Data on college application portfolios provides information on whether application rates
to UNC campuses with engineering undergraduate degrees differs by gender. UNC tran-
script data shows final UNC enrollment and course sequences taken by term. To better
understand the extent to which major orientation translates to actual major choice and
how this can differ along gender lines, I follow a sample of engineering-oriented students
through UNC enrollment. Summary statistics in A2 juxtapose the academic achieve-
ments, college application and UNC curricular exposure of the high school students that
chose engineering as their preferred major. Female students in this sample have similar
SAT math scores as their male peers, but exhibit higher SAT verbal scores and cumulative
GPA.

3.3 CIRP Freshmen Survey

The third dataset is an annual survey of entering full-time college freshmen administered
by the Cooperative Institutional Research Program (CIRP). As the largest continuous na-
tional survey of college students, the CIRP Freshmen Survey provides a snapshot of in-
coming students’ background characteristics and college expectations.9 The dependent
variable on engineering intentions comes from a question eliciting students’ probable
fields of study. Family background variables include parents’ occupational categories and
total income, while measures of academic preparation derive from student self-reports of
SAT and ACT scores and high school GPA.10

A key advantage of the survey is the breadth of its coverage spanning multiple factors
of potential relevance to the gender gap. The first involves self-confidence and academic
ability beliefs in the form of self-reported assessments of academic, mathematical, and
writing abilities.11 Conditioning on standardized test scores, high school GPA, and other
objective measures of academic performance allows for examining the role of academic
self-confidence independent of assessed academic ability. Apart from ability beliefs, some
students may prefer engineering for its expected pecuniary benefits or compatibility with
preferences for problem-solving and scientific inquiry. These tastes and preferences are
partially captured via questions on personal goals and expected future acts.12 The survey

9Most universities and colleges administer the survey during student orientation, although the survey
is typically made available between March and October annually.

10Previous literature on the relationship between self-reported and actual GPAs finds reasonable validity,
with a particularly strong positive correlation for higher ability students (Kuncel et al., 2005).

11Students are asked to rate themselves on each trait along a scale of 1) lowest 10%, 2) below average, 3)
average, 4) above average, and 5) highest 10%.

12Students evaluate the personal importance of each social, political, academic or economic goal by de-
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incorporates economic considerations via a question on the importance of “being very
well off financially.” Coverage of the role of prosocial and other-regarding values includes
questions on the importance of “helping others who are in difficulty,” “influencing social
values,” and likelihood that the student will “participate in volunteer or community ser-
vice work.” Professional goals in the arts and sciences are captured by the importance of
“creating artistic works” and “making a theoretical contribution to science.” Finally, the
relationship between family considerations and major choice relies on a variable on the
importance of raising a family.

While the CIRP Freshmen Survey extends as far back as 1965, I constrain the analytic
sample to more recent cohorts to ensure the consistency of survey variables over time.
The sample retains all students in four-year colleges or universities with non-missing de-
mographics information, SAT scores, and parental occupational categories.13 The pooled
cross-sectional base sample of 2,042,832 students spans the 1990-1999, 2001, 2004, 2006,
2008 and 2010 cohorts. Average SAT scores in the survey are higher than the UNC sam-
ple, reflecting likely compositional differences in the sample of participating universities
and students (Table A3). Aspiring engineers are highly selected on attributes such as
mathematical ability beliefs and interest in making a theoretical contribution to science.

4 The engineering pipeline: entry vs. exit

Table 2 traces the engineering gender gap from the beginning of high school to post-
secondary education. Among multiple data sources documenting sizable and persistent
gaps in engineering orientation, the earliest data point comes from the High School Lon-
gitudinal Study of 2009 (HSLS:09). The HSLS:09 uniquely provides information on early
engineering predilection for a nationally representative sample of 9th graders that is ab-
sent in administrative data and other recent longitudinal surveys. Results show that 9th
grade students exhibit a 8.2 percentage point gender disparity in engineering orientation,
defined by a preference for an engineering job or occupation at age 30.14 Students in the

scribing them as 1) not important, 2) somewhat important, 3) very important, and 4) essential. The survey
also asks students to guess the probability of undertaking a future action, such as changing their major or
dropping out of college. Students choose between 1) no chance, 2) very little chance, 3) some chance, and
4) very good chance.

13For the small subset of students with only ACT composite scores and missing SAT values, I input SAT
math and verbal scores using the sample of individuals who took both standardized exams and a quartic of
ACT scores. Across the sample, less than 5% of academic beliefs, personal goals, and expected future acts
covariates have missing values. I include indicators for missing data and sample means in place of missing
data.

14The outcome variable is constructed from student responses to the question “what is the job or occupa-
tion that you expect or plan to have at age 30?” during the fall of their high school freshman year. Students
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second half of high school exhibit a 14.7 percentage point gap, comparable to the 14.0
percentage gap documented at the beginning of students’ postgraduate careers using the
CIRP Freshmen Survey. One concern with high school data is that major intentions in-
dicated on a college entrance exam may not endure into college and translate into actual
major choice. The last specification follows students’ decisions using UNC administrative
files that document term-by-term major choice. Column (4) presents a snapshot of the full
sample of UNC students who attained at least 30 credit hours (approximately one year of
study) at their home institutions. Among this group, females are 11.5 percentage points
less likely to choose engineering. The magnitude of this disparity becomes more apparent
when it is compared to baseline participation rates: just over 3 percent for women.

〈 Table 2 about here 〉

These sizable gender gaps in STEM participation are consistent with several expla-
nations. First, they could be attributable to differences in the sampled population, from
the nationally representative HSLS:09 to aspiring college students in North Carolina. To
gauge the extent of sample selection in the North Carolina context, I juxtapose the full
sample of high school seniors with SAT test-takers aspiring to college and students who
eventually enroll in the public university system. Table B1 shows that females are over-
represented among SAT test-takers relative to the full high school sample at 55% and
51%, respectively.15 Conditional on taking the test, the share of females enrolling in UNC
is slightly larger relative to female representation among SAT test-takers (Table B2).16 One
question that arises is whether differential selection into college explains a portion of the
STEM gender gap (Card and Payne, 2017). This is ostensibly not the case for engineering,
since female enrollment in the five main UNC engineering campuses is close to parity.17

Another potential difference is in the way each sample solicited engineering orien-
tation. Question wording in the HSLS:09 referred to expected job or occupation, while

are categorized as having an engineering orientation if they choose the ”Architecture and Engineering”
occupation category with the STEM sub-domain exclusively in Life and Physical Science, Engineering,
Mathematics, and Information Technology Occupations. All students with STEM sub-domains split across
engineering and architecture are categorized as non-engineering.

1547% of all North Carolina seniors took the SAT exam at least once in the second half of high school.
1656% of the College Board sample of SAT test-takers are female, compared to 57% of UNC enrollees.
17There is evidence of sorting across the UNC system 16-campus system, with only 52% of females en-

rolling in UNC engineering campuses compared to 57% among all campuses. The main engineering cam-
puses include North Carolina State University (NCSU), East Carolina University, North Carolina A&T State
University, UNC - Charlotte, and Western Carolina University. Other campuses such as Appalachian State
University and Elizabeth City State University offer limited engineering technology programs. NC State
University is considered the state’s premier engineering degree-granting institution. Its STEM-focused cur-
riculum contrasts with the state flagship, UNC Chapel Hill. These subject differences in degree offerings
arise in part from the evolution of land-grant and flagship universities common in many states.
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North Carolina high school students and the national sample of college freshmen were
asked about their first choice or probable major. Despite these differences, evidence exists
to support an actual broadening of the gender disparity during high school. Using the
same sample and question wording, the first HSLS follow-up in 2012 showed a gap of 9.8
percentage points among students expected to be in 11th grade.

Table 2 underscores the magnitude of differential entry during high school and the
early postsecondary years. Another important factor to consider is the role of exit. Fe-
males may switch out at higher rates due to any combination of academic, social, and
environmental factors. The longitudinal nature of the UNC sample provides a suitable
context for examining attrition from engineering. I follow a sample of full-time, first-time
freshmen enrollees in 2003-2010 whose initial declared major was engineering. Table 3
regresses an indicator for dropping out of engineering on gender and other covariates.
The first column shows a raw attrition gap among females that is statistically insignifi-
cant from male peers. Conditioning on cohort fixed effects and academic performance as
measured by SAT scores and high school GPA attenuates the still insignificant gender dis-
parity in persistence. Taken together, the evidence suggests that higher attrition among
aspiring women is not a first-order explanation for postsecondary gender disparities in
engineering. Women have already sorted away from the field at the point these datasets
begin documenting major intentions.18

〈 Table 3 about here 〉

5 Empirical approach

Stark gender disparities prompt the question of what affects students’ decision to pursue
engineering. In order to characterize inputs into the major choice decision that draw on
common hypotheses cited in the literature, we can express the utility attached to engi-
neering as:

U = f(X,A, S,Λ) (1)

X is a set of sociodemographic characteristics such as gender, race, and parental occu-
pations. A captures academic preparation and achievement reflecting individuals’ ability
to perform well in engineering-related coursework. This variable also encompasses the

18The present timespan precludes studying attrition in the labor market. As such, subsequent attrition
from the engineering workforce due to professional, social, and family reasons may play a significant role
but are outside the scope of this study.
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effort exerted to lay the academic foundations for entering this major, as well as expo-
sure to key math and science courses in secondary education or earlier that can shape
students’ engineering interests. S is a set of beliefs about ability shaping students’ expec-
tations for success. S is subject to interactions with individual attributes such as gender
and ability, to the extent that parental and classroom influences shape ability beliefs dif-
ferentially along individual characteristics and academic achievement measures. Finally,
Λ describes preferences and work-related tastes such as pecuniary vs. non-pecuniary
motivations and prosocial orientation. This furthermore reflects the cumulative effect of
exposure to social context and its interactions with gender. The baseline model I estimate
conditions on only a parsimonious set of individual characteristics X to characterize the
raw gender gap in engineering:

Yi = αbase + βbaseFemi + φbaseXi + εbasei (2)

Yi indicates whether individual i expresses an engineering orientation or is observed
to major in the subject. X is a set of individual characteristics such as race. The parameter
of interest, β, expresses the average gender difference in engineering participation. In
order to determine the contribution of ability beliefs, prosocial preferences, and other
contextual factors to the gap, I augment the baseline model with several factors in the full
specification:

Yij = αfull + βfullFemi + φfullXi + γfull1 Aij + γfull2 Sij + γfull3 Λij + ηj + εfullij (3)

The subscript j denotes high school. A is a vector of academic preparation variables
including SAT math, SAT verbal, high school GPA, and high school credits earned in
reading, math, science, and computer programming. I assume that the effect of ability
beliefs S is estimable via survey questions that elicit self-assessments of mathematical,
academic, and writing abilities. Λ represents a vector of survey responses that capture
pecuniary, other-regarding, work-based, and family preferences.19 There are likely other
inputs into the major decision-making process not captured by existing covariates. For
instance, students with unobserved preferences for engineering coursework may select
into different high schools offering contrasting academic environments that shape major
orientation. I include high school fixed effects ηj to address selection on school-level

19An individual with higher math ability beliefs, ceteris paribus, will invest more in STEM-related human
capital, which can further shape engineering-related ability beliefs and preferences for engineering course-
work. Due to data constraints, this specification abstracts away from the dynamic relationships between
human capital investment, ability beliefs, and preference formation.
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unobservables and omitted variables.20

A hurdle in estimating the contribution of each covariate to β is that results are non-
robust to the sequence in which they are added to the base regression. I rely on the decom-
position technique of Gelbach (2016) to render the factor contributions order-invariant.21

The decomposition relies on the sample omitted variable bias formula to explain the sen-
sitivity underlying the relationship between β and included covariates. The portion of
the gender gap explained by new explanatory variables is δ̂Fem = β̂base − β̂full. This total
difference is separable into k additional covariate groups:

δ̂Fem =
∑
k

δ̂k,Fem =
∑
k

Γ̂k,Femγ̂
full
k (4)

This setup makes clear that δ̂k,Fem, the contribution of the k-th covariate (group), is the
product of two channels of influence. The first is the male-female difference in this factor
after partialling out all other explanatory elements in the base regression. Γ̂k,Fem is the
coefficient on Fem from an auxiliary regression of the k-th covariate on all explanatory
variables in the base model. The amount explained by SAT math scores, for instance,
depends on the raw gender difference in this attribute after conditioning on the basic set
of individual characteristics. The second channel γ̂fullk reflects how correlated the k-th co-
variate is to the outcome under the full model. A sufficiently small coefficient associated
with SAT math suggests that it will not be a meaningful contributor to the gender gap.

6 Results

Findings begin with the high school engineering gender gap and focus on the roles of
students’ academic achievement, curricular exposure, and extracurricular involvement.
Since major intentions are given in the second half of high school, questions remain on
whether these major preferences and gaps persist into postsecondary schooling. I turn
to linked UNC data to examine the stability of major preferences during the transition
to college. Data from the national CIRP Freshmen Survey and a sample of twins from
North Carolina expands the set of potential explanatory factors to include ability beliefs,
prosocial values, and family background and structure.

20I estimate the model using high school fixed effects in the College Board and UNC samples only because
the CIRP Freshmen Survey does not elicit high school IDs.

21The approach of Gelbach (2016) generalizes the Oxaca-Blinder technique while ensuring path indepen-
dency.
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6.1 High school major orientation and academic achievement

Table 4 augments the unconditional linear probability model from Table 2 with standard-
ized test scores, cumulative GPA during the first half of high school, earned credits in
reading, math, physical science, and computer programming, and participation in high
school extracurriculars. Controlling for only SAT performance reduces the gender gap
from 14.7 to 13.3 percentage points, since students are positively selected on math scores
to enter engineering and negatively selected on verbal performance. The addition of GPA
indicators widens the gap to 13.6 percentage points to account for increased male en-
gineering participation when elevating their grades to the same level as female peers.
Meanwhile, controlling for earned credits in grades 9 and 10 leads to minimal change.
Another source of potential differentiation along gender lines is the choice of high school
extracurriculars. Accounting for extracurricular participation in computer activities, jour-
nalism, government, music, theater, dance, and ROTC attenuates the gap to 14.2 percent-
age points. Female participation is noticeably higher in the theater and arts, although
aspiring female engineers are similarly distinguished as their male counterparts by their
reduced involvement in these activities relative to same-gender peers. Participation in
computer-related activities is strongly associated with higher engineering take-up rates
among both genders.

〈 Table 4 about here 〉

Columns 7 and 8 in Table 4 display decomposition results for four contributing factors:
credits earned, high school choice, SAT scores and GPA, and extracurricular activities.
The full model explains 12.2% of the aggregate 14.7 percentage point disparity. Earned
credits across multiple subjects in the first half of high school have little tangible effect on
the gender divergence in engineering orientation, explaining 0.6% of the gap. The role
of high school choice is even smaller at 0.3%. SAT scores and cumulative GPAs explain a
further 7.5%. This magnitude is notably less than earlier studies. For example, nearly one-
third of the engineering gender gap among college graduates in the 1989 entering cohort
are explained via differences in SAT performance (Turner and Bowen, 1999).22 This is
consistent with the literature showing convergence in standardized test scores over recent
decades. Finally, extracurricular participation explain 3.8%, with the largest contributor
as participation in computer-related activities.23

22SAT scores may play a greater role in this study due to the composition of high-ability students in
the College and Beyond Database. They originate from 12 institutions: Stanford, Yale, Princeton, Kenyon,
Oberlin, Swarthmore, Hamilton, Williams, Wesleyan, Bryn Mawr, Smith, and Wellesley. On the other hand,
the use of categorical variables for SAT scores in place of 10-point indicators may underestimate the contri-
bution of SAT scores to the gender gap.

2315% of aspiring female engineers distinguish themselves early by engaging in computer-related ex-

15



6.2 Major orientation during the transition to college

Having established that high school major orientation already diverges along gender
lines, I turn to the transition to postsecondary and explore two sets of questions. One is
how these differences translate to actual college major choice, and the other examines the
extent to which differential college application and enrollment behaviors among men and
women may explain changes in major orientation during the transition. Linked North
Carolina data permits tracking students as they make the transition from high school to
one of UNC’s 16 campuses. I begin with a sample of high school students that chose a
STEM field as their preferred major and eventually enrolled in UNC during 2010. Af-
ter attaining 30 credit hours at UNC, 61% of these STEM-oriented students persisted in
this track by declaring a STEM major (Table 5). Men are more likely to choose engineer-
ing while women prefer other STEM fields such as biological sciences. Of students who
switch out of STEM, the largest share chose a major in business, legal studies, or social
sciences. Students inclined towards engineering in high school exhibit a similar pattern
of persistence within STEM. Nearly one-third exit STEM for the social sciences, business,
humanities, and other majors.

〈 Table 5 about here 〉

Among those aspiring to an engineering degree, 43% of all females end up declaring
an engineering major compared to 50% of men. This gender gap is statistically signifi-
cant when incorporating data from the 2009 cohort, suggesting that female high school
students are less likely to convert engineering orientation into actual major choice.24 This
prompts further inquiries into what takes place during the transition to college. I investi-
gate whether differences are explained by varying levels of certainty in one’s initial major
orientation, applications to UNC campuses with established engineering undergraduate
programs, and enrollment in these campuses. Covariates such as campus selection are en-
dogenous as they are likely guided by the same underlying factors that propel students
into engineering majors. I simply use these covariates to describe how behavior during
key decision points may diverge along gender lines.

Table 6 follows a sample of students from high school through UNC enrollment and
subsequent major choice. Using engineering major declaration at the time of 30 earned
credit hours as an outcome, the first specification replicates the unadjusted engineering

tracurriculars during grades 9 and 10, compared to 9% of non-engineers. Analogous statistics among males
are 16% and 12%.

24In analyses not shown, 44% of women in the 2009-2010 enrollment cohorts continued onto an engineer-
ing major, or 7 percentage points fewer than male peers.
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gender gap of 11.5 percentage points in Table 2. Controlling for high school engineer-
ing orientation decreases the gap to 4.0 percentage points, suggesting that the majority
of the gender divergence in major choice is already determined by the second half of
high school. Decomposition results quantify the share at 59.4%. In contrast, the gap re-
mains largely stable when the certainty of initial major preferences or UNC application
behaviors are taken into account. 0.8% is attributable to differences in the certainty of
high school major choice. While male students who declare an engineering major exhibit
similar levels of certainty as those who choose an alternate field of study, aspiring female
engineers are less sure of their decision (Table A2). Finally, the choice of UNC campus
contributes 8.9% to the overall gap. Despite applying to comparable sets of UNC institu-
tions, female students are less likely to enroll in UNC campuses offering an engineering
degree. Enrollment choices are not likely driven by lower acceptance rates at engineering-
focused institutions, as engineering-oriented females have superior high school GPA and
comparable SAT math scores. Other factors are prompting engineering-oriented female
students to opt out of this track during the transition to college.

〈 Table 6 about here 〉

6.3 Ability beliefs, prosocial values and other preferences

A deeper understanding of these gender disparities is possible by investigating explana-
tory accounts not typically captured by administrative datasets. I turn to the CIRP Fresh-
men Survey to evaluate the importance of five factors: beliefs in academic abilities, pe-
cuniary goals, other-regarding values, professional contributions in the arts and sciences,
and family considerations. Table 7 decomposes the contributions of these accounts. The
full model reduces the gender gap by 3.8 percentage points, or 27%, from the uncondi-
tional gap of 14.0 percentage points. Cross-gender differences in SAT scores and high
school GPA contribute 4.8% to the overall variation, compared to 7.5% in the high school
sample. Potential explanations for this disparity range from differences in student com-
position to classical measurement error that can be introduced via self-reported academic
achievement scores. Neither pecuniary goals nor family considerations had a sizable
impact. While men were more likely to elevate the importance of financial gain, pecu-
niary goals accounted for only 0.5% of the gender disparity. The small mean difference in
men and womens survey responses led to family considerations contributing a negligible
amount to the gender disparity.

〈 Table 7 about here 〉
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Beliefs in academic, mathematical, and writing ability explain another 7.5%. The ma-
jority of this effect is driven by lower math ability beliefs among female students, condi-
tional on academic performance. Since students who are confident along this dimension
are more likely to select into engineering, equalizing females’ math ability beliefs with
males’ bridges the gender gap by an amount that rivals the contribution of standardized
test scores and GPA. Next I turn to two accounts focused on preferences: prosocial val-
ues and professional goals. Women are over-represented among those those who place
greater importance on helping others in difficulty and influencing social values, with
prosocial values explaining 7.9% of the gap.25 Cross-gender differences in professional
goals such as making a theoretical contribution to science and becoming accomplished in
the arts explain an additional 6.5%. The contribution of academic ability beliefs relative
to individual preferences is notable given the mixed evidence in the literature. Among
the few gender gap studies that jointly focus on these attributes, Zafar (2013) found that
the majority of the gap is explained by gender differences in preferences and expected en-
joyment of studying in different fields. The relatively small contribution assigned to self-
confidence stands in contrast to the prominent role occupied by ability beliefs in other
studies (Valian, 1998; Antecol and Cobb-Clark, 2013; Leslie et al., 2015).26 These results
establish that academic ability beliefs matter alongside individual preferences for STEM
participation.

Results from the full sample of college freshmen may disguise heterogeneous responses
across individual attributes. I re-examine these patterns by ethnicity and math ability in
recognition of potential interactions between these individual attributes and explanatory
factors. For example, family and cultural backgrounds can differentially shape how fe-
males perceive their academic mastery, leading to different contributions of academic
ability beliefs. Figure 1 divides the sample by race/ethnicity into white, African Ameri-
can, Hispanic, and Asian. The aggregate explanatory power of academic ability beliefs,
prosocial preferences, professional goals, and SAT scores and GPA is the highest for white
students at 28%. Hispanic and Asian students lag slightly behind, while the model ac-
counts for only 17% of the African American gender disparity. Professional goals and
academic performance play a less consequential role among black students because dif-
ferences in academic performance and theoretical interests among black men and women
are smaller compared to other ethnic groups. The resulting African American gender gap

2527% of female respondents believe that helping those in difficulty is essential, compared to 17% of
males.

26In Zafar (2013), the cumulative contribution of academic ability beliefs, reconciling work and family,
and beliefs about future earnings is less than 5% of the aggregate engineering gap and statistically insignif-
icant, compared to 27% explained by beliefs about coursework enjoyment and 60% by other preferences.
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in engineering is smaller than that of white students, and this is driven by higher levels
of engineering interest among females rather than lagging participation among men.27

〈 Figure 1 about here 〉

Segmenting the sample by SAT math scores shows that the share of explained vari-
ation increases in SAT math performance (Figure 2). Among low scorers, beliefs about
mathematical ability account for 4-5% of cross-gender differences in engineering inten-
tions, compared to over 7% among the highest SAT math scorers. Moreover, math ability
beliefs comprise the majority of explanatory power contributed by all academic ability
beliefs. This suggests that math anxiety and confidence is a particularly salient feature
of the decision to enter engineering. Similar to ability beliefs, the contribution of profes-
sional goals is steadily increasing in SAT math scores. 3% of the gap among low math
achievers are explained by gender differences in professional goals, compared to over
10% among the highest achievers. Among higher-scoring individuals, gender differences
in the importance of making a scientific or artistic contribution widen and the correla-
tions between engineering intentions and goals such as making theoretical contributions
in science strengthen.

〈 Figure 2 about here 〉

6.4 Family background and structure

Yet another source of variation is parental influence and family context. Parental expec-
tations for academic achievement and occupational choices are shown to differ by the
child’s gender.28 These expectations may be informed by parents’ professional experi-
ences. Namely, gender-stereotypical career orientation may be muted in families where
mothers work in math-related occupations and serve as professional role models for
daughters. To test this possibility, I condition the models on mothers’ and fathers’ oc-
cupational categories in the CIRP Freshmen Survey. Table 7 shows that accounting for
parental occupations increases the engineering gender gap by 0.2%, suggesting that pro-
fessional experiences have limited scope for bridging gender differences in engineering
orientation.

2717.5% of African American males exhibit interest in engineering compared to 17.6% among white males.
5.2% of African American females express an engineering orientation at this stage compared to 3.5% among
white females.

28Research shows, for instance, that parents on average have lower academic expectations for daughters
(Fryer and Levitt, 2010).
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Parental occupation belongs to a broader set of mechanisms that can shape gender-
based norms with consequences for STEM orientation. Family background, teachers and
peers can also establish and reinforce gender-based expectations of success in math- and
science-oriented subjects, which in turn can lead boys and girls to diverge in their hu-
man capital investments. While it is difficult to isolate each individual influence, one
means of gauging their cumulative effect is to compare the academic trajectories of oth-
erwise similar children from different family compositions. I use a sample of same- and
opposite-sex twins in North Carolina, under the assumption that sex composition is as
good as random across families with twins. This assumption is challenged by a lack of
information on twin zygosity in North Carolina data. While much empirical evidence
supports the conjecture that fraternal (dizygotic) twin pairs are as likely to be same-sex
as opposite-sex, I cannot rule out that genetic or environmental factors affect the occur-
rence of identical (monozygotic) twins included under the sample of same-sex twins.29

The inability to restrict the sample to only dizygotic twins is taken into account when
interpreting results. Under the assumption of random sex assignment among twin pairs,
opposite-sex twins are distinguished by the salience of gender norms and any divergent
engineering orientation on their part may be explained by differential gender role-based
socialization during childhood and adolescence. When monozygotic twins are included
in the sample, interpretation needs to consider the relationship between future STEM ori-
entation and unobserved genetic or environmental factors shaping the family context for
identical twins.

Table A4 shows the twins’ engineering orientation at the end of high school while
chronicling their academic achievement, attrition, SES, and computer use during elemen-
tary and middle school. The top panel juxtaposes engineering orientation and mean test
scores of students from opposite sex twins with that of same-sex twins, conditional on
taking the SATs. The bottom panel uses the full sample of 9569 twin pairs. The shares of
college-aspiring females from both types of family structures aiming to major in engineer-
ing are statistically indistinguishable at 2%. On the other hand, males from opposite-sex
twin pairs are significantly more likely to indicate an interest in engineering. 19% named
engineering as their preferred major compared to 15% of same-sex male twins. Expressed
in regression form, the unadjusted gap in Table 8 is 3.8 percentage points.30

29The Weinberg’s differential rule establishes the independence of sexes in dizygotic twins. Multiple
national registry datasets confirm the rule’s robustness under different empirical contexts (Fellman and
Eriksson, 2006).

30A specification of the following form is run separately for males and females:

Yih = γ + δ OppSexh + ρXih + εih (5)
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〈 Table 8 about here 〉

The first candidate explanation for these patterns is academic preparation. Males in
opposite-sex pairs may prefer engineering because they are better qualified in math than
male-male pairs due to differential selection into the SAT sample or skill investment over
time. In fact, the reverse is true - males in opposite-sex twin pairs are more interested in
engineering despite having SAT math scores that are on average 10 points lower.31 As a
result, conditioning on SAT scores increases the advantage of opposite-sex male twins in
engineering orientation from 3.8 to 4.2 percentage points (Table 8). Another explanation
for these findings is that males in opposite-sex pairs are acting on their math advantage
relative to their female twins. In an average pairing, males score almost 25 points higher
in SAT math than females. I test the relative advantage hypothesis by restricting the
control group to include only the twin in male-male pairs with higher math performance.
In results not shown, males from opposite-sex pairs are still 2.6 percentage points more
likely to choose engineering. Relative advantage cannot account for these differences.

One notable detail from Table A4 is that same-sex and opposite-sex pairs in the full
sample consistently display similar levels of academic achievement, attrition rates, and
socioeconomic status during middle school, with one exception. Males in opposite-sex
pairings use computers more frequently than male-male twin pairings. Assuming these
twins have similar access to home computers, the evidence is consistent with males in
opposite-sex pairs investing more heavily in computer skills, which were previously
shown to predict future engineering orientation. The exact mechanisms behind gender-
based skill specialization can range from parental inputs to relationship dynamics within
twin pairings, although they are difficult to determine in the absence of additional data
on home environments and twin interactions.

These findings echo those from a study relating sibling sex composition to major
choice. Conditional on attending a college-preparatory high school, males with at least
one sister are more likely to choose a male-stereotypical major relative to males with only
brothers (Anelli and Peri, 2015). This study’s choice of twins stems from the need to ad-
dress endogeneity concerns surrounding sibling sex composition. Twins are preferred
over siblings because they are less affected by sex considerations in fertility decisions that
are correlated with differential parental expectations and investments. Even then, the

Engineering orientation for individual i in household h depends on family structure, in this case whether
the individual is part of an opposite-sex twin pair, and a vector of individual attributes such as standardized
test scores (Xih).

31The SAT math deficit among opposite-sex males is at least partially due to greater selection on ability
into SAT test-taking among same-sex males. The latter group is 3 percentage points less likely to take the
test, and those who do have significantly higher scores.
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presence of identical twins in the sample suggests caution. Since identical twins share
more genetic endowment, their skill investments and career orientation relative to the
other may differ from same-sex fraternal twins. If these hard-to-observe differences in
family context manifest in lower STEM-orientation, my results can overstate the contri-
bution of gender role-based socialization and expectations.

7 Conclusion

Female under-representation in STEM fields such as engineering is a long-standing phe-
nomenon. With the ascendance of women in college enrollment and completion, re-
searchers are focusing on differential take-up and postsecondary attrition as key explana-
tions for the STEM gender gap (Preston, 2004; Hunt, 2016). North Carolina longitudinal
data used in this paper shows that selective attrition during higher education cannot ex-
plain the gap. Rather, pre-college differences and the transition to postsecondary merit
additional scrutiny. Administrative and survey datasets document a sizable gender gap
by 9th grade that persists throughout high school.32 Efforts that promote STEM inter-
est and increase exposure to engineering-related skills during secondary and elementary
school require a better understanding of factors underlying engineering orientation. I
decompose the gender gap into several explanatory accounts, including differences in
academic performance, beliefs in ability, other-regarding values, and professional goals
in the arts and sciences. SAT scores and high school GPA explain between 5 to 7% of the
gap across three different datasets. High school sorting plays a negligible role, although
high school curriculum choice, credits earned, and participation of extracurricular activi-
ties do matter for future academic tracks.

Beliefs in academic ability explain 8% of gender disparities in engineering, conditional
on objective measures of academic ability. The majority of the result derives from differ-
ential beliefs in mathematical ability. Expectations about academic environment may be
moderating this effect, as young women often hold themselves to higher standards in
male-dominated fields like mathematics and engineering (Hill et al., 2010). The belief
that they must be exceptionally good to succeed can reinforce the confidence gap and
further exacerbate female under-representation (Correll, 2004). These confidence deficits
have diverse social origins ranging from teachers’ stereotypical biases to parental evalu-
ations of competency (Herbert and Stipek, 2005; Gunderson et al., 2011). One means of

32Recent work on female under-representation in the academic sciences, for instance, corroborates the
need to shift attention to pre-college major orientation over gender discrimination in the workforce (Ceci
et al., 2014).
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closing the engineering gap is to bridge gender differences in ability beliefs that are not
justified by actual performance.

Remaining factors capture dimensions of individual preferences. Women are more
likely to assign greater importance to values that correlate with lower engineering partic-
ipation, including helping others in difficulty, influencing social values, and participating
in community service work. These prosocial values collectively explain 8% of the gap.
Professional goals in the arts and science explain a further 7%, with men disproportion-
ately aiming to make a theoretical contribution to science. These associations suggest
paths for future inquiry to better distinguish between underlying causes. Lower female
participation may be driven by factors correlated with prosociality, such as appetite for
risk and competition, preferences for job attributes such as the amount of collaborative
teamwork, flexible work arrangements, mentorship opportunities, or preferences for ap-
plied vs. theoretical job tasks. Identifying the minimum set of sufficient conditions for
behavioral change entails a more controlled setting that permits inference of causal rela-
tionships between these preferences and STEM participation.

Even when all observable influences are tallied, well over two-thirds of the gender
participation gap in engineering remain. It is worth dwelling on the content of this un-
explained residual. Candidate explanations span several categories, including family cir-
cumstances and parental inputs, preferences for the college experience, professional pref-
erences, and labor market expectations. The twins-based analysis shows that opposite-
sex pairs are more likely to pursue gender-stereotypical majors and suggests a role for
parental investments and expectations. Although there exist challenges to causal in-
terpretation in this context and limited information on the exact channels of influence,
the prevalence of significant gender gap underscores the importance of studying gender-
based socialization and expectations. Another component of the residual may be unmea-
sured preferences for college coursework and experiences that differ along gender lines.
Gender differences in beliefs about coursework enjoyment explained over one-quarter of
the engineering gender gap in a separate study (Zafar, 2013). Some of this divergence may
be due to differential math ability beliefs, since students likely enjoy coursework more if
they believe they would do well in the class. However, evidence suggests that other
attributes, such as the receptiveness of the field to females, can shape beliefs about enjoy-
ment. This relates to yet another possible point of divergence among men and women:
professional preferences and labor market expectations. Decomposition results show that
professional considerations feature prominently among high-ability students, who are
disproportionately more likely to aspire to STEM careers. If otherwise well-qualified
female students are more pessimistic about their opportunities for mentorship and ad-
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vancement, this may explain part of the residual. Taken together, distinguishing between
these conjectures require detailed longitudinal data on expectations, beliefs, inputs, and
behaviors. The dynamic nature of human capital investment and preference formation
suggests that laying the data groundwork can pay dividends for designing timely and
tailored interventions.
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Table 1: Share of recent college graduates in STEM fields

STEM Engineering Computer
Science

Biology Math and
Statistics

Physical
Sciences

Engineer
Tech

Agriculture Science
Tech

Female 14.8 2.5 0.9 7.0 0.9 2.5 0.2 0.9 0.1
Male 30.5 11.7 4.7 6.9 1.7 3.8 0.7 1.1 0.0
Notes: Sample comprises individuals from the 2008-2012 American Community Survey who graduated college and are between 22 -
23 years old.

Table 2: The engineering gender gap in high school and college

High school Postsecondary
HSLS: Gr. 9 College Board: Gr. 11 & 12 CIRP: freshmen UNC: 30 credit hrs

(1) (2) (3) (4)

Female −0.082∗∗∗ −0.147∗∗∗ −0.140∗∗∗ −0.115∗∗∗
(0.003) (0.002) (0.000) (0.006)

Black −0.008 0.001 0.015∗∗∗ −0.037∗∗∗
(0.005) (0.002) (0.001) (0.006)

Hispanic −0.013∗∗∗ 0.009∗∗∗ 0.021∗∗∗ −0.022∗
(0.004) (0.003) (0.001) (0.012)

Asian 0.028∗∗∗ 0.026∗∗∗ 0.044∗∗∗ 0.009
(0.009) (0.003) (0.001) (0.017)

American Indian −0.016 −0.011∗∗∗ −0.012∗∗∗ −0.043∗∗
(0.022) (0.004) (0.005) (0.020)

Other −0.004 −0.012∗∗∗ 0.006∗∗∗ 0.012
(0.006) (0.003) (0.001) (0.015)

Observations 14668 266895 2042832 10548
R2 0.040 0.070 0.072 0.045
Notes: HSLS:09 is a nationally representative sample of 9th graders in 2009. The outcome variable is constructed from
weighted student responses to the question “what is the job or occupation that you expect or plan to have at age 30?”
using the S1OCC30 variable. Students are categorized as being oriented towards engineering if they choose the ”Ar-
chitecture and Engineering” occupation category with the STEM sub-domain exclusively in Life and Physical Science,
Engineering, Mathematics, and Information Technology Occupations. All students with STEM sub-domains split across
engineering and architecture are categorized as non-engineering. Results are weight-adjusted. The College Board sam-
ple comprises students who took the SAT exam in 2009 - 2014 at least once as juniors or seniors. The outcome variable
is constructed from a variable eliciting students’ first choice major. The sample includes observations with non-missing
SAT scores and those who can be linked to 9th or 10th grade transcript data. The base specification uses indicator vari-
ables for cohort year and academic level during the last SAT test administration. Standard errors are clustered at the
high school level. The CIRP Freshmen Survey sample spans 1990-1999, 2001, 2004, 2006, 2008, and 2010 academic years.
The outcome variable comes from a variable eliciting freshmen’s probable field of study or major. The base specification
uses year and college type indicators and student weights. The UNC sample comprises 2010 enrollees who declared a
major by the time of attaining 30 credit hours at their home institution, with non-missing high school GPAs, SAT scores,
and transcript data. Standard errors are clustered at the high school level. * p<0.1, ** p<0.05, *** p<0.01
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Table 3: Attrition among engineering students

Raw gap Conditional gap

Female 0.023 0.013 0.015
(0.014) (0.012) (0.011)

Black −0.049 −0.008
(0.030) (0.007)

Hispanic −0.053∗∗ −0.048∗∗
(0.018) (0.015)

Asian 0.020 0.022
(0.016) (0.014)

American Indian 0.011 0.017
(0.032) (0.025)

Other 0.028 0.031
(0.015) (0.017)

SAT and high school GPA Yes Yes
Cohort FE Yes Yes
UNC campus FE Yes

Observations 14889 14889 14889
R2 0.000 0.036 0.040
Notes: Sample comprises students whose initial declared major is en-
gineering. Dependent variable is an indicator for dropping out of en-
gineering. The unadjusted model is then augmented with SAT math
and verbal score indicators for each 10-point bin and for each high
school GPA decile. * p<0.1, ** p<0.05, *** p<0.01
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Table 4: High school gender gap

OLS Decomposition
Diff % Explained

(1) (2) (3) (4) (5) (6) (7) (8)

Female −0.147∗∗∗ −0.146∗∗∗ −0.136∗∗∗ −0.146∗∗∗ −0.142∗∗∗ −0.129∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Earned credits in Grades 9 & 10 −0.001∗∗∗ −0.6%

Reading credits in Gr. 9 −0.004∗∗ −0.006∗∗∗

(0.002) (0.002)
Rath credits in Gr. 9 −0.002 0.003∗∗

(0.002) (0.001)
Physical science credits in Gr. 9 0.012∗∗∗ 0.004

(0.003) (0.003)
Computer prog. credits in Gr. 9 0.032∗∗∗ 0.014

(0.011) (0.013)
Reading credits in Gr. 10 −0.007∗∗∗ −0.007∗∗∗

(0.001) (0.001)
Math credits in Gr. 10 0.015∗∗∗ 0.009∗∗∗

(0.002) (0.001)
Physical science credits in Gr. 10 0.021∗∗∗ 0.002

(0.002) (0.001)
Computer prog. credits in Gr. 10 0.045∗∗∗ 0.028∗∗∗

(0.010) (0.011)

High school fixed effects Yes Yes −0.000∗ −0.3%
SAT and high school GPA Yes Yes −0.011∗∗∗ −7.5%
Extracurriculars in Grades 9 and 10 Yes Yes −0.006∗∗∗ −3.8%

Observations 266895 266895 266895 266895 266895 266895
R2 0.070 0.077 0.091 0.072 0.072 0.101
Total −0.018∗∗∗ −12.2%

Notes: High school sample includes students who took the SAT exam in 2009 - 2014 at least once as juniors or seniors. The sample excludes observations with
missing SAT scores and those who cannot be linked to College Board or transcript data. All OLS specifications include indicators for race, cohort, and the
grade level of the latest SAT administration. Augmented models include earned credits in grades 9 and 10, high school fixed effects, and indicators for each 10-
point SAT math and verbal score bin, deciles for cumulative GPA during grades 9 and 10, and extracurriculars spanning participation in computer activities,
music/vocal, theater, junior ROTC, dance, government/political, and journalism/literary activities during both 9th and 10th grades. Robust standard errors
are clustered at the school level. The last two columns decompose the 1.8 percentage point difference between the parsimonious model (Column 1) and full
model (Column 6) into its constituent parts. * p<0.1, ** p<0.05, *** p<0.01

32



Table 5: College major choice among STEM-oriented high school students

High school STEM orientation Engineering orientation
College major choice All Female Male All Female Male

Engineering 0.27 0.13 0.33∗∗∗ 0.49 0.43 0.50
Other STEM 0.34 0.43 0.30∗∗∗ 0.15 0.18 0.14
Art/Humanities 0.04 0.05 0.04 0.04 0.04 0.04
Health 0.02 0.05 0.01∗∗∗ 0.01 0.01 0.01
Education 0.03 0.05 0.02∗∗∗ 0.02 0.05 0.02∗∗

Business/Legal/Social Sciences 0.16 0.16 0.16 0.13 0.07 0.14∗∗

Other 0.14 0.13 0.14 0.16 0.21 0.15∗∗

Observations 2233 692 1541 1050 149 901
Notes: The sample includes students who chose STEM as a first choice major in high school and enrolled in UNC in 2010. The sample
excludes those who did not declare a major by the time they attained 30 credit hours at their home institution, and those with non-missing
high school GPAs, SAT scores, or transcript data. The first 3 columns use the full sample, and the subsequent 3 columns condition on
choosing engineering as the preferred major during high school. Stars denote statistically significant difference in means relative to students
of the opposite gender. * p<0.1, ** p<0.05, *** p<0.01
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Table 6: Transition to college engineering major

OLS Decomposition
Diff % Explained

(1) (2) (3) (4) (5) (6) (7) (8)

Female −0.115∗∗∗ −0.040∗∗∗ −0.113∗∗∗ −0.112∗∗∗ −0.100∗∗∗ −0.035∗∗∗

(0.006) (0.005) (0.006) (0.006) (0.006) (0.005)

High school engineering orientation Yes Yes −0.068∗∗∗ −59.4%
Certainty of major preferences Yes Yes −0.001∗∗ −0.8%
UNC application behavior Yes Yes −0.000 −0.1%
UNC campus fixed effects Yes Yes −0.010∗∗∗ −8.9%

Observations 10548 10548 10538 10548 10548 10538
R2 0.045 0.230 0.046 0.054 0.124 0.270
Total −0.079∗∗∗ −69.3%

Notes: The outcome is a dichotomous variable for declaring an engineering major after earning 30 credit hours in the UNC institution, conditional on not having dropped out. The
sample includes 2010 UNC enrollees who declared a major by the time of attaining 30 credit hours at their home institution, with non-missing high school GPAs, SAT scores, and
transcript data. The first OLS specification is the raw gender difference in actual college engineering major choice. Augmented models include indicators for picking engineering
as the preferred major during high school, the certainty of high school major preferences (very certain, fairly certain, and not certain), an indicator for applying to at least one UNC
campus that offers an engineering undergraduate program, and UNC campus fixed effects. Robust standard errors are clustered at the high school level. The last two columns
decompose the 7.9 percentage point difference between the parsimonious model (Column 1) and full model (Column 6) into its constituent parts. * p<0.1, ** p<0.05, *** p<0.01

34



Table 7: Decomposition - CIRP Freshmen Survey

Contribution Share of gap

SAT and high school GPA -0.007∗∗∗ -4.8%

Self-confidence: academic ability -0.011∗∗∗ -7.5%
Self Rating: Academic ability
Self Rating: Mathematical ability
Self Rating: Writing ability

Pecuniary goals -0.001∗∗∗ -0.5%
Goal: Being very well off financially

Social and other-regarding values -0.011∗∗∗ -7.9%
Goal: Helping others who are in difficulty
Goal: Influencing social values
Future act: Participate in volunteer/community service

Professional goals in the arts and sciences -0.009∗∗∗ -6.5%
Goal: Becoming accomplished in one of the perf. arts
Goal: Creating artistic work (painting, sculpture, etc.)
Goal: Making a theoretical contribution to science

Family considerations 0.000 0.0%
Goal: Raising a family

Parental occupations 0.000∗∗∗ 0.2%
Father’s aggregate career category
Mother’s aggregate career category

Number of college applications -0.000∗∗∗ -0.1%

Total -0.038∗∗∗ -27.1%
Notes: CIRP Freshmen Survey sample spans 1990-1999, 2001, 2004, 2006, 2008, and 2010 academic years. The
inclusion of the full set of covariates reduces gender gap from 14.0% to 10.2%. Specifications include year and
college type fixed effects, and use student weights. * p<0.1, ** p<0.05, *** p<0.01
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Table 8: Engineering orientation among twin sample

Females Males

Opposite-sex twin −0.006 −0.006 0.039∗∗∗ 0.042∗∗∗

(0.005) (0.005) (0.013) (0.013)

Race and cohort FE Yes Yes
SAT scores Yes Yes

Observations 4420 4420 3571 3571
R2 0.000 0.064 0.003 0.059
Notes: Twins are flagged in the NCERDC on the basis of identifying information such
as birth date, name, and home address. The full sample includes all twins appearing
in grade 3 during 2000 - 2005, up to grade 8 in 2005 - 2010, that have non-missing SAT
score information between 2009 - 2014. The female sample comprises both females
in opposite-sex twins and same-sex female twins. The male sample comprises both
males in opposite-sex twins and same-sex male twins. Models are augmented with
indicators for SAT math and verbal scores for each 10-point bin, grade at the latest
SAT test administration, and cohort fixed effects. * p<0.1, ** p<0.05, *** p<0.01
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Figure 1: Decomposition by ethnicity
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Appendix

A Summary statistics

Table A1: Summary statistics - high school sample

Female Male
Engineer Not engineer Engineer Not engineer

SAT math 568.10 493.49∗∗∗ 553.99 517.08∗∗∗

SAT verbal 533.42 487.90∗∗∗ 501.83 491.92∗∗∗

Cumulative GPA in Grades 9 and 10 3.82 3.41∗∗∗ 3.44 3.24∗∗∗

Earned reading credits in Grade 9 1.18 1.18 1.14 1.16∗∗∗

Earned math credits in Grade 9 1.22 1.24∗∗ 1.23 1.24∗∗∗

Earned physical science credits in Grade 9 0.08 0.07∗∗ 0.07 0.07∗∗

Earned computer programming credits in Grade 9 0.01 0.00∗∗∗ 0.01 0.00∗∗∗

Earned reading credits in Grade 10 1.11 1.15∗∗∗ 1.07 1.09∗∗∗

Earned math credits in Grade 10 1.26 1.17∗∗∗ 1.20 1.16∗∗∗

Earned physical science credits in Grade 10 0.53 0.34∗∗∗ 0.39 0.33∗∗∗

Earned computer programming credits in Grade 10 0.01 0.00∗∗∗ 0.02 0.01∗∗∗

Grade 9 computer activity 0.15 0.09∗∗∗ 0.16 0.12∗∗∗

Grade 10 computer activity 0.15 0.09∗∗∗ 0.16 0.12∗∗∗

Grade 9 music/vocal activity 0.08 0.11∗∗∗ 0.03 0.04∗∗∗

Grade 10 music vocal activity 0.08 0.11∗∗∗ 0.03 0.04∗∗∗

Grade 9 theater activity 0.08 0.09∗∗ 0.03 0.04∗∗∗

Grade 10 theater activity 0.08 0.10∗∗∗ 0.03 0.05∗∗∗

Grade 9 junior ROTC 0.04 0.02∗∗∗ 0.05 0.04∗∗∗

Grade 10 junior ROTC 0.04 0.02∗∗∗ 0.05 0.04∗∗∗

Grade 9 dance activity 0.11 0.12 0.01 0.01∗∗∗

Grade 10 dance activity 0.11 0.12∗∗ 0.01 0.01∗∗∗

Grade 9 govt/political activity 0.08 0.05∗∗∗ 0.03 0.03∗∗∗

Grade 10 govt/political activity 0.11 0.07∗∗∗ 0.04 0.05∗∗∗

Grade 9 journalism/literary activity 0.03 0.03 0.01 0.01∗∗∗

Grade 10 journalism/literary activity 0.05 0.06∗∗ 0.01 0.02∗∗∗

Observations 2936 144344 20031 99584
Notes: high school sample comprises students who took the SAT exam in 2009 - 2014 at least once as juniors or seniors. Sample excludes
observations with missing SAT scores and those who cannot be linked to 9th or 10th grade transcript data. Stars denote statistically significant
difference in means relative to students of same gender group who chose engineering as preferred major. * p<0.1, ** p<0.05, *** p<0.01
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Table A2: Summary statistics - UNC sample

Female Male
Engineer Not engineer Engineer Not engineer

SAT math 597.77 524.27∗∗∗ 605.07 561.93∗∗∗

SAT verbal 551.93 518.83∗∗∗ 539.42 529.58∗∗∗

High school GPA 4.23 3.80∗∗∗ 3.99 3.71∗∗∗

High school engineering orientation 0.27 0.01∗∗∗ 0.64 0.12∗∗∗

Very certain in first choice major 0.20 0.36∗∗∗ 0.26 0.27
Applied to at least 1 of 5 main UNC engineering campuses 0.98 0.79∗∗∗ 0.94 0.81∗∗∗

Enrolled in UNC engineering campus 1.00 0.49∗∗∗ 0.96 0.55∗∗∗

Observations 233 5803 702 3810
Notes: Sample includes 2010 UNC enrollees who declared a major by the time of attaining 30 credit hours at their home institution, with non-
missing high school GPAs, with non-missing high school GPAs, SAT scores, and transcript data. The 5 main UNC engineering campuses
include North Carolina State University (NCSU), East Carolina University, North Carolina A&T State University, UNC - Charlotte, and
Western Carolina University. A small share of students applied to and enrolled in campuses such as Appalachian State University and
Elizabeth City State University, which offer limited engineering programs. Stars denote statistically significant difference in means relative
to students of the opposite gender. * p<0.1, ** p<0.05, *** p<0.01

Table A3: Summary statistics - CIRP Survey

Female Male
Engineer Not engineer Engineer Not engineer

SAT math 630.20 555.14∗∗∗ 631.80 581.88∗∗∗

SAT verbal 579.35 546.65∗∗∗ 565.59 549.94∗∗∗

Self Rating: Academic ability 4.28 3.91∗∗∗ 4.24 4.00∗∗∗

Self Rating: Mathematical ability 4.15 3.35∗∗∗ 4.18 3.61∗∗∗

Self Rating: Writing ability 3.47 3.56∗∗∗ 3.36 3.52∗∗∗

Goal: Being very well off financially 3.02 2.96∗∗∗ 3.16 3.09∗∗∗

Goal: Helping others who are in difficulty 2.79 2.97∗∗∗ 2.55 2.70∗∗∗

Goal: Influencing social values 2.18 2.42∗∗∗ 2.03 2.29∗∗∗

Future Act: Participate in volunteer/comm. service work 3.11 3.11∗∗∗ 2.61 2.67∗∗∗

Goal: Becoming accomplished in one of the performing arts 1.46 1.60∗∗∗ 1.36 1.52∗∗∗

Goal: Creating artistic work (painting, sculpture, etc.) 1.42 1.57∗∗∗ 1.37 1.51∗∗∗

Goal: Making a theoretical contribution to science 2.24 1.67∗∗∗ 2.18 1.77∗∗∗

Goal: Raising a family 2.94 3.07∗∗∗ 3.04 3.07∗∗∗

Observations 41624 1042214 168047 790947
Notes: Freshmen Survey sample spans 1990-1999, 2001, 2004, 2006, 2008, and 2010 academic years. Means reported using sample weights.
Self-rating variables are reported on a scale of 1-5: 1) lowest 10%, 2) below average, 3) average, 4) above average, and 5) highest 10%. Goals
and Future Acts are reported on a 1-4 scale. The corresponding categories for goals are: 1) not important, 2) somewhat important, 3) very
important, and 4) essential. The scale for future acts inquire about the probability of undertaking a future action: 1) no chance, 2) very little
chance, 3) some chance, and 4) very good chance. Stars denote statistically significant difference in means relative to students of same gender
group who chose engineering as preferred major. * p<0.1, ** p<0.05, *** p<0.01
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Table A4: Summary statistics - twin sample

Female Male
Mean N Mean N

Same-
sex

Opp-
sex

Same-
sex

Opp-
sex

Same-
sex

Opp-
sex

Same-
sex

Opp-
sex

Conditional on taking SATs
Engineering orientation 0.02 0.02 2827 1593 0.15 0.19∗∗∗ 2256 1315
SAT math 491.58 491.80 2827 1593 525.14 515.66∗∗ 2256 1315
SAT verbal 484.76 485.92 2827 1593 493.51 485.68∗∗ 2256 1315

Full sample
Engineering orientation 0.01 0.01 6174 3386 0.05 0.07∗∗∗ 6194 3386
Took SATs 0.46 0.47 6174 3386 0.36 0.39∗∗ 6194 3386
Math EOG in Grade 8 0.15 0.12 5130 2838 0.11 0.09 4943 2746
Math EOG in Grade 7 0.11 0.09 5291 2903 0.10 0.08 5088 2820
Math EOG in Grade 6 0.09 0.09 5301 2946 0.07 0.06 5153 2890
Reading EOG in Grade 8 0.15 0.12 5130 2839 0.05 0.03 4911 2743
Reading EOG in Grade 7 0.17 0.16 5287 2902 0.02 0.01 5059 2811
Reading EOG in Grade 6 0.14 0.14 5291 2943 0.00 -0.01 5119 2885
Attrited in Gr. 7 0.05 0.04∗ 6174 3386 0.05 0.04 6194 3386
Attrited in Gr. 6 0.03 0.03 6174 3386 0.03 0.03 6194 3386
Attrited in Gr. 5 0.02 0.02 6174 3386 0.03 0.03 6194 3386
Free or reduced lunch in Grade 8 0.42 0.41 5134 2843 0.41 0.40 4994 2754
Free or reduced lunch in Grade 7 0.42 0.40 5080 2782 0.40 0.38 4947 2710
Free or reduced lunch in Grade 6 0.43 0.42 5178 2856 0.41 0.41 5087 2832
Use computer ≥ 1-2 times/wk in Gr 8 0.35 0.34 5112 2825 0.28 0.31∗∗∗ 4919 2731
Use computer ≥ 1-2 times/wk in Gr 7 0.27 0.29∗ 5267 2887 0.22 0.25∗∗∗ 5077 2801
Use computer ≥ 1-2 times/wk in Gr 6 0.23 0.24 5300 2940 0.19 0.21∗∗ 5154 2876

Notes: sample comprises all twin pairs appearing in grade 3 during 2000 - 2005, up to grade 8 in 2005 - 2010. Twins are flagged in NCERDC on
the basis of identifying information such as birth date and home address. The full sample includes 3386 opposite-sex pairs, 3087 female same-
sex pairs, and 3097 male same-sex pairs. The top panel restricts to individuals who took the SATs and have non-missing score information
between 2009 - 2014. Stars denote statistically significant difference in means of students in a given gender group who belong to a same-sex
versus opposite-sex pair. * p<0.1, ** p<0.05, *** p<0.01
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B Sample selection

Table B1: High school senior and College Board samples

Full sample College Board sample

Female 0.51 0.55∗∗∗

Black 0.27 0.25∗∗∗

Hispanic 0.08 0.05∗∗∗

Asian 0.03 0.03∗∗∗

American Indian 0.01 0.01∗∗∗

White 0.58 0.63∗∗∗

Other 0.03 0.03∗∗∗

Economically disadvantaged 0.38 0.27∗∗∗

Observations 545534 255221
Notes: The full sample includes all seniors enrolled in a North Carolina public or charter high school in 2009-2014.
The College Board sample includes all matched seniors in 2009-2014 who took the SATs in their junior or senior
year with non-missing transcript data. Stars denote statistically significant difference in means from full high
school sample. * p<0.1, ** p<0.05, *** p<0.01

Table B2: College Board and UNC samples

College Board sample UNC sample
Full Applied to engi

UNC campuses
Full Enrolled in engi

UNC campus

Female 0.56 0.55∗∗∗ 0.57∗∗∗ 0.52∗∗∗

Black 0.25 0.23∗∗∗ 0.26∗∗ 0.24∗∗∗

Hispanic 0.04 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

Asian 0.03 0.04∗∗∗ 0.04∗∗∗ 0.04∗∗∗

American Indian 0.01 0.01∗∗∗ 0.01 0.01∗∗∗

White 0.64 0.66∗∗∗ 0.65∗∗ 0.67∗∗∗

Other 0.02 0.02∗∗ 0.02∗∗∗ 0.02∗

Economically disadvantaged 0.25 0.22∗∗∗ 0.20∗∗∗ 0.19∗∗∗

Observations 41820 25482 19198 9744
Notes: The full College Board sample includes all seniors in 2010 who took the SATs in their junior or senior year with
non-missing transcript data. The next sample includes all students who applied to one of five UNC campuses offering
an undergraduate engineering degree: East Carolina University, North Carolina A&T State University, UNC - Charlotte,
North Carolina State University, and Western Carolina University. The College Board NCSU sample only includes stu-
dents who applied to North Carolina State University. The UNC sample includes all students matched to the full 2010
high school sample who enrolled in one of 16 UNC campuses. The last column shows the subset of these students who
enrolled in an engineering campus. Stars denote statistically significant difference in means from full College Board
sample. * p<0.1, ** p<0.05, *** p<0.01
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